Investigación em salud em microgravedad:

um mapeo sistemático de la literatura

Autores/as

  • Marcelo Krat Mendes Programa de Pós-graduação em Administração, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brasil
  • Roger de Bem Jaeger Programa de Pós-graduação em Administração, Universidade Federal do Rio Grande do Sul, UFRGS), Porto Alegre, RS, Brasil

DOI:

https://doi.org/10.22480/revunifa.2024.37.638

Palabras clave:

Microgravedad, Vuelo espacial, Investigación en salud, Investigación en salud. Investigación en microgravedad

Resumen

El estado de microgravedad, o micropeso, existe en un vehículo en órbita en estado de caída libre, es decir, sin ninguna fuerza actuando sobre él, excepto las fuerzas gravitatorias. Esto da como resultado un estado libre de estrés y tensión en el que los fluidos exhiben un comportamiento alterado, lo que hace que los experimentos de microgravedad sean esenciales para la investigación en ciencias espaciales. Por lo tanto, este estudio tiene como objetivo identificar tendencias y oportunidades de investigación en este campo del conocimiento, reduciendo esta brecha en la literatura a través de un mapeo sistemático de la literatura. De los estudios identificados en las bases de datos PubMed, ScienceDirect y Wiley Online Library, 242 fueron seleccionados tras aplicar criterios de inclusión y exclusión. NPJ Microgravity y Reino Unido se destacaron como la revista que más publicó y su país de origen. También se observó que el número de publicaciones en esta área ha ido en aumento, con un pico en el año 2021. Entre las formas de estudio en microgravedad, la investigación a bordo de la Estación Espacial Internacional y, en la Tierra, a través de la descarga de patas traseras. Las áreas de la salud con más investigación son la salud musculoesquelética y la biología celular. A través de este artículo, los interesados ​​en el tema pueden tener un primer contacto o profundizar y actualizar sus conocimientos, además de utilizar los resultados para realizar otros estudios en profundidad a través de una revisión sistemática de la literatura.

Biografía del autor/a

  • Marcelo Krat Mendes, Programa de Pós-graduação em Administração, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brasil

    Doutorando em Administração pela Universidade Federal do Rio Grande do Sul (UFRGS), na área de Inovação, Ciência e Tecnologia e mestre pelo PPG Tecnologias da Informação e Gestão em Saúde, pela Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), já atuou como Gestor de Inovação e Tecnologia no Programa Inova RS, da Secretaria De Inovação, Ciência e Tecnologia do estado do Rio Grande do Sul. Pesquisador do Grupo de Pesquisa em Estratégia e Inovação (GPEI/UFRGS). Presta mentoria voluntária para Startups do Programa de Aceleração da Escola de Administração da UFRGS (AcelerEA). Especialização em Processos de Inovação pela FEEVALE em andamento. Bacharel em Gestão em Saúde pela UFCSPA.

  • Roger de Bem Jaeger, Programa de Pós-graduação em Administração, Universidade Federal do Rio Grande do Sul, UFRGS), Porto Alegre, RS, Brasil

    Doctorando en Administración, en el área de Innovación, Tecnología y Sostenibilidad (PPGA/UFRGS). Maestro en Administración, en el área de Estudios Organizacionales (PPGA/UFRGS). Especialista en Peritaje y Auditoría (NECON/UFRGS). Graduado en Administración de Empresas (FAPA). Servidor Público Federal - Administrador en la Pró-reitoría de Planificación y Administración de la UFRGS, donde ejerce el cargo de Director de la División de Seguimiento de Proyectos y Convenios. Actúa como profesor invitado en cursos de posgrado lato sensu, en disciplinas de proyectos in company y como profesor orientador de trabajos de conclusión de curso (TCC). Investigador del Grupo de Investigación en Estrategia e Innovación (GPEI/UFRGS). Mentor de Startups del Programa de Aceleración de la Escuela de Administración de la UFRGS (AcelerEA). Investigador integrante de los proyectos de investigación titulados (i) Análisis de la formación de estrategias organizacionales en el contexto latinoamericano y (ii) Los principales recursos de las startups y cómo gestionarlos: un estudio Brasil-Francia. Principales líneas de investigación: Estrategia, Innovación, Ecosistemas de Innovación, Apoyo al Emprendimiento, Startup y Gestión Pública.

Referencias

ANASUYA, B.; DEEPAK, K. K.; JARYAL, A. K. The Cardiovascular Variability during Transient 6 degrees Head Down Tilt and Slow Breathing in Yoga Experienced Healthy Individuals. Int J Yoga, 14, n. 3, p. 188-197, Sep-Dec 2021.

AXPE, E.; CHAN, D.; ABEGAZ, M. F.; SCHREURS, A. S. et al. A human mission to Mars: Predicting the bone mineral density loss of astronauts. PLoS One, 15, n. 1, p. e0226434, 2020.

BARBOSA, A. A.; DEL CARLO, R. J.; GALVÃO, S. R.; VILELA, M. J. et al. Bone mineral density of rat femurs after hindlimb unloading and different physical rehabilitation programs. Revista Ceres, 58, n. 4, p. 407-412, 2011.

BARTELS, R. Re-interpreting R² , regression through the origin, and weighted least squares. University of Sydney Business School. Available from: https://www.researchgate.net/profile/Robert-Bartels/publication/283333191_Re-interpreting_R-squared_regression_through_the_origin_and_weighted_least_squares/links/5634317e08aeb786b7014027/Re-interpreting-R-squared-regression-through-the-origin-and-weighted-least-squares.pdf. [Accessed: 08 August 2022].

BLABER, E.; MARÇAL, H.; BURNS, B. P. Bioastronautics: The Influence of Microgravity on Astronaut Health. Astrobiology, v. 10, n. 5, 2010.

BLOTTNER D.; PÜTTMANN, B.; SALANOVA, M.; SCHIFFL, G.; TIRRWEGER, J. et al. Skeletal Muscle Deconditioning, Nitric Oxide (NO) Biomarker, and Exercise Countermeasure - Five Years of Bed Rest Studies. Journal of Gravitational Physiology, 13(2), 49-58, 2006.

BREUNINGER, J.; BELSER, V.; LAUFER, R.; DROPMANN, M. et al. Design of a 1.5 Seconds High Quality Microgravity Drop Tower Facility. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 14, n. ists30, p. Ph_7-Ph_14, 2016.

CHARLES, J. B. Bioastronautics Roadmap - A Risk Reduction Strategy for Human Space Exploration. National Aeronautics and Space Administration, Washington DC, Feb., 2005. Available from: https://humanresearchroadmap.nasa.gov/Documents/BioastroRoadmap.pdf. [Accessed: 08 August 2022].

CHOWDHURY, P.; LONG, A.; HARRIS, G.; SOULSBY, M. E. et al. Animal model of simulated microgravity: a comparative study of hindlimb unloading via tail versus pelvic suspension. Physiol Rep, 1, n. 1, p. e00012, Jun 2013.

DERMEVAL, D.; COELHO, J. A. P. de M.; BITTENCOURT, I. I. Mapeamento Sistemático e Revisão Sistemática da Literatura em Informática na Educação. In: JAQUES, P. A.; SIQUEIRA, S.; BITTENCOURT, I.; PIMENTEL, M. (Org.) Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa. Porto Alegre: SBC, 2020. Available from: https://metodologia.ceie-br.org/livro-2. [Accessed: 08 August 2022].

DUTRA, V. R.; VIEIRA, K. M.; SILVA, W. V. d.; KREUTZ, R. R. State-of-the-Art: A Systematic Review of the Literature on Financial Well-Being. Revista Universo Contábil, 16, n. 2, 2021.

EVANS, C.; ROBINSON, J.; TATE-BROWN, J. Research on the International Space Station: An Overview. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, DOI: 10.2514/6.2009-186.

GARCIA, T. M.; SILVA, M. G. G.; NASCIMENTO, R. P. C. Mapeamento sistemático: adoção de padrões de interoperabilidade no governo. Revista Científica da FASETE, 1, 207-221, 2018.

HORNECK, G. Astrobiological aspects of Mars and human presence: pros and cons. Hippokratia, 1:49–52, 2008.

HARGENS, A. R.; VICO, L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985), 120, n. 8, p. 891-903, Apr 15 2016.

HERRANZ, R.; ANKEN, R.; BOONSTRA, J.; BRAUN, M. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology, 13, n. 1, p. 1-17, Jan 2013.

KITCHENHAM, B.; BRERETON, P.; BUDGEN, D. Mapping study completeness and reliability - a case study. In: 16th International Conference on Evaluation & Assessment in Software Engineering (EASE 2012), 2012, p. 126-135. DOI: 10.1049/ic.2012.0016.

KLEIN, K. E.; BLUTH, B. J.; WEGMANN, H. M. Assessment of space station design and operation through bioastronautics. Acta. Astronaut, 17:207–212, 1988.

KREUTZ, R.; VIEIRA, K. M.; SILVA, W. V.; DUTRA, V. R. State-of-the-art: a systematic review of the literature on financial well-being. Revista Universo Contábil, v. 16, n. 2, p. 87-109, 2021.

MOREY-HOLTON, E. R.; GLOBUS, R. K. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985), 92, n. 4, p. 1367-1377, Apr 2002.

NAPOLEÃO, B.; FELIZARDO, K.; SOUZA, É.; VIJAYKUMAR, N. Practical similarities and differences between Systematic Literature Reviews and Systematic Mappings: a tertiary study. In: Proceedings of the 29th International Conference on Software Engineering and Knowledge Engineering, p. 85-90, 2017. DOI: 10.18293/seke2017-069.

NICKERSON, C. A. Welcome statement-npj Microgravity. NPJ Microgravity, 1, p. 15006, 2015.

OLUWAFEMI, F. A.; FATOKI, T. H.; IBRAHEEM, O. Clinostat microgravity impact on root morphology of selected nutritional and economic crops. Plant Cell Biotechnology and Molecular Biology, v. 21, p. 92-104, 2020.

ORTER, S.; MOSTL, S.; BACHLER, M.; HOFFMANN, F. et al. A comparison between left ventricular ejection time measurement methods during physiological changes induced by simulated microgravity. Exp Physiol, 107, n. 3, p. 213-221, Mar 2022.

PETERSEN, K.; MUJTABA, S.; FELDT, R.; MATTSSON, M. Systematic Mapping Studies in Software Engineering, 2008. Available from: https://www.researchgate.net/publication/228350426. [Accessed: 08 August 2022].

PLETSER, V. Gravity, weight and their absence. In: Springer Briefs in Physics. Singapore: Springer Nature Singapore Pte Ltd, 2018. Available from: https://link.springer.com/book/10.1007/978-981-10-8696-0. [Accessed: 23 July 2022]. DOI: 10.1007/978-981-10- 8696-0.

PLETSER, V.; RUSSOMANO, T. Research in Microgravity in Physical and Life Sciences: An Introduction to Means and Methods. In: Preparation of Space Experiments, 2020. cap. Chapter 1.

RICHARDS, J. T.; TORRES, J. J.; GLEESON, J. R.; JOHNSON, C. M.; ZHANG, Y. Customized Science Carrier Modules and Accessories Developed for Microgravity Simulation Devices. NTRS - NASA Technical Reports Server, 2021. Available from: https://ntrs.nasa.gov. NASA/TP-20210021724. [Accessed: 23 July 2022].

ROGERS, M. J. B.; VOGT, G. L.; WARGO, M. J. Microgravity: A Teacher’s Guide with Activities in Science, Mathematics, and Technology (National Aeronautics Space Administration, Washington, 1997, Available in: www.nasa.gov/pdf/62474main_Microgravity_ Teachers_Guide.pdf. [Accessed: 23 July 2022].

SCHULZ, H.; DIETRICHS, D.; WEHLAND, M.; CORYDON, T. J. et al. In Prostate Cancer Cells Cytokines Are Early Responders to Gravitational Changes Occurring in Parabolic Flights. Int J Mol Sci, 23, n. 14, Jul 17 2022.

SHANMUGARAJAN, S.; ZHANG, Y.; MORENO-VILLANUEVA, M.; CLANTON, R. et al. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion. Int J Mol Sci, 18, n. 11, Nov 18 2017.

SOAITA, A. M.; SERIN, B.; PREECE, J. A methodological quest for systematic literature mapping. International Journal of Housing Policy, 20, n. 3, p. 320-343, 2019.

VERNIKOS, J. Human Exploration of Space: why, where, what for? Hippokratia, v. 12, n. 1, p. 6-9, 2008.

WAISBERG, E.; ONG, J.; ZAMAN, N.; KAMRAN, S. A.; LEE, A. G.; TAVAKKOLI, A. A non-invasive approach to monitor anemia during long-duration spaceflight with retinal fundus images and deep learning. Life Sciences in Space Research, v. 33, p. 69-71, 2022.

WILLIAMS, D. R. Bioastronautics: optimizing human performance through research and medical innovations. Nutrition, v. 18, p. 794–796, 2002.

XU, D.; GUO, Y. B.; ZHANG, M.; SUN, Y. Q. The subsequent biological effects of simulated microgravity on endothelial cell growth in HUVECs. Chin J Traumatol, 21, n. 4, p. 229-237, Aug 2018.

ZHANG, Y. N.; SHI, W. G.; LI, H.; HUA, J. R. et al. Bone Loss Induced by Simulated Microgravity, Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats. Biomed Environ Sci, 31, n. 2, p. 126-135, Feb 2018.

ZHOU, Y.; NI, H.; LI, M.; SANZARI, J. K. et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One, 7, n. 9, p. e44329, 2012.

Descargas

Archivos adicionales

Publicado

2024-07-02

Número

Sección

Articulos de Revisión

Cómo citar

Investigación em salud em microgravedad: : um mapeo sistemático de la literatura. La Revista de la Universidad de la Fuerza Aérea , Rio de Janeiro, v. 37, p. 1–20, 2024. DOI: 10.22480/revunifa.2024.37.638. Disponível em: https://revistadaunifa.fab.mil.br/index.php/reunifa/article/view/638.. Acesso em: 21 nov. 2024.

Artículos similares

1-10 de 299

También puede Iniciar una búsqueda de similitud avanzada para este artículo.