Nanodispositivos electrónicos basados en nanocintas de grafeno
DOI:
https://doi.org/10.22480/revunifa.2013.26.597Palabras clave:
Nanodispositivos, Microelectrónica, Nanoelectrónica, GrafenoResumen
La búsqueda por nuevos materiales que permitiesen la diminución de la escala de dispositivos reales, con la posibilidad de aumento en su eficiencia, llevó a pesquisas sobre las propiedades electrónicas del “grafeno” que posibilitasen la construcción de alternativas “nanométricas” para dispositivos presentes actualmente en microelectrónica. Este trabajo revisa la literatura, presentando “nanodispositivos” electrónicos que poseen comportamento igual o superior a los dispositivos microelectrónicos, así como da un ejemplo de una real aplicación de dichos “nanodispositivos”.
Referencias
YU, B.; SOHIER, T. Ultralow-voltage design of graphene PN junction quantum reflective switch transistor. Applied Physics Lett, New York, v. 98, p. 213104, 2011.
BERGER, C. et al. Electronic confinement and coherence in patterned epitaxial grapheme. Science, New York, v. 312, p. 1191-1196, 2006.
CHOUDHURY, M. R. et al. Graphene nanoribbon FETs: technology exploration for performance and reliability. IEEE Transactions on Nanotechnology, New Jersey, v. 10, n. 4, p. 727-736, 2011.
CHUN-CHUNG, C. et al. Graphene-silicon schottky diodes. Nano Letters, Washington, v. 5, 2011.
DATTA, S. Quantum transport: atom to transistor. 2nd ed. New York: Cambridge University Press, 2005.
DAWSON, P. et al. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation. Journal of Physics D, Philadelphia, v. 44, 2011.
GEIM, A. K.; MACDONALD, A. H. Graphene: exploring carbon flatland. Physics Today, New York, v. 60, p. 35-41, 2007.
GEIM, A. K.; Novoselov, K. S. The rise of grapheme. Nature Mater, London, v. 6, p. 183-191, 2007.
HEER, W. A. de et al. Pionics: the emerging science and technology of graphene-based nano-electronics. In: ELECTRON DEVICES MEETING TECH, 2007, [S.l.]. Proceedings… [S.l.]: IEEE, 2007. p. 199-202.
ISLAM, Muhammad R. et al. Schottky diode via dielectrophoretic assembly of reduced graphene oxide sheets between dissimilar metal contacts. New Journal of Physics, Philadelphia, v. 13, 2011.
JYOTSNA, C.; JING, G. Atomistic simulation of graphene nanoribbon tunneling transistors. In: NANOELECTRONICS CONFERENCE (INEC), 3., 2010, Hong Kong. Proceedings… Hong Kong: IEEE, 2010. p. 200-201.
KAI-TAK, L. et al. A simulation study of graphenenanoribbon tunneling FET with heterojunction channel. IEEE Electron Device Letters, New Jersey, v. 31, 2010.
KARGAR, A.; CHENGKUO, L. Graphene nanoribbon schottky diodes using asymmetric contacts. In: IEEE CONFERENCE ON NANOTECHNOLOGY, 9., 2009, Genoa. Proceedings… Genoa: IEEE, 2009. p. 243-245.
KATSNELSON, M. Graphene: carbon in two dimensions: materials today. New York: Cambridge University Press, 2007.
LOHMANN, T.; KLITZING , K. von; SMET, J. H. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Letter, Washington, v. 9, 2009.
NOORDEN, R. V. Moving towards a graphene world. Nature, London, v. 442, p. 228-229, 2006.
NOURBAKHSH, A. et al. Modified, semiconducting graphene in contact with a metal: characterization of the Schottky diode. Applied Physics Letters, Argonne, v. 97, 2010.
NOVOSELOV, K. S. et al. Electric field effect in atomically thin carbon films. Science, New York, v. 306, p. 666-669, 2004.
PEZOLDT, J.; HUMMEL, C.; SCHWIERZ, F. Graphene field effect transistor improvement by graphene-silicon dioxide interface modification. Physica E, Toronto, v. 44, 2011.
REICH, S. Tight-binding description of graphene. Physical Review B, New York, v. 66, n. 3, 2002.
SAI-KONG, C. et al. Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transactions on Electron Devices, New Jersey, v. 57, 2010.
SCHWIERZ, F. Electronics: industry-compatible graphene transistors. Nature, London, v. 472, 2011.
SEDRA, A. S.; SMITH, K. C. Microelectronic circuits. 5th ed. Oxford: Oxford University, 2004. 1 CD-ROM.
SON, Y. W.; COHEN, M. L.; LOUIE, S. G. Energy gaps in graphene nanoribbons. Physical Review B, New York, v. 97, n. 21, 2006.
TONGAY, S. et al. Tuning Schottky diodes at the many-layer-graphene/ semiconductor interface by doping. Carbon, Toronto, v. 49, 2011.
XINMING, L. et al. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, Malden, v. 22, 2010.
YU-MING, L. et al. Wafer-scale graphene integrated circuit. Science, New York, v. 332, n. 6035, p. 1294-1297, 2011.
ZHANG, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature, London, v. 438, p. 201-204, 2005.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2013 Clerisson Monte do Nascimento, Fernando Antônio Pinheiro Gomes, Victor Dmitriev
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Revista da UNIFA permite que o (s) autor (es) mantenha(m) seus direitos autorais sem restrições. Atribuição-NãoComercial 4.0 Internacional (CC BY-NC 4.0) - Revista da UNIFA é regida pela licença CC-BY-NC