Nanoscale electronic devices based on graphene nanoribbons

Authors

  • Clerisson Monte do Nascimento Universidade Federal do Pará Belém/PA- Brasil
  • Fernando Antônio Pinheiro Gomes Faculdade de Tecnologia da Amazônia Manaus/AM - Brasil
  • Victor Dmitriev Universidade Federal do Pará Centro Tecnológico - Departamento de Engenharia Elétrica Belém/PA- Brasil

DOI:

https://doi.org/10.22480/revunifa.2013.26.597

Keywords:

Nanodevices, Microelectronics, Nanoelectronics, Graphene

Abstract

The search for new materials that allow the reduction of the scale of actual devices, with the possibility of increase in efficiency has led to researches on the electronic properties of graphene that enable the construction of nanometric alternatives to the devices currently present in microelectronics. This paper presents a literature review, presenting nanoscale electronic devices that have performance equal or superior to microelectronic devices, and also presents an example of a real application of such nanodevices.

References

YU, B.; SOHIER, T. Ultralow-voltage design of graphene PN junction quantum reflective switch transistor. Applied Physics Lett, New York, v. 98, p. 213104, 2011.

BERGER, C. et al. Electronic confinement and coherence in patterned epitaxial grapheme. Science, New York, v. 312, p. 1191-1196, 2006.

CHOUDHURY, M. R. et al. Graphene nanoribbon FETs: technology exploration for performance and reliability. IEEE Transactions on Nanotechnology, New Jersey, v. 10, n. 4, p. 727-736, 2011.

CHUN-CHUNG, C. et al. Graphene-silicon schottky diodes. Nano Letters, Washington, v. 5, 2011.

DATTA, S. Quantum transport: atom to transistor. 2nd ed. New York: Cambridge University Press, 2005.

DAWSON, P. et al. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation. Journal of Physics D, Philadelphia, v. 44, 2011.

GEIM, A. K.; MACDONALD, A. H. Graphene: exploring carbon flatland. Physics Today, New York, v. 60, p. 35-41, 2007.

GEIM, A. K.; Novoselov, K. S. The rise of grapheme. Nature Mater, London, v. 6, p. 183-191, 2007.

HEER, W. A. de et al. Pionics: the emerging science and technology of graphene-based nano-electronics. In: ELECTRON DEVICES MEETING TECH, 2007, [S.l.]. Proceedings… [S.l.]: IEEE, 2007. p. 199-202.

ISLAM, Muhammad R. et al. Schottky diode via dielectrophoretic assembly of reduced graphene oxide sheets between dissimilar metal contacts. New Journal of Physics, Philadelphia, v. 13, 2011.

JYOTSNA, C.; JING, G. Atomistic simulation of graphene nanoribbon tunneling transistors. In: NANOELECTRONICS CONFERENCE (INEC), 3., 2010, Hong Kong. Proceedings… Hong Kong: IEEE, 2010. p. 200-201.

KAI-TAK, L. et al. A simulation study of graphenenanoribbon tunneling FET with heterojunction channel. IEEE Electron Device Letters, New Jersey, v. 31, 2010.

KARGAR, A.; CHENGKUO, L. Graphene nanoribbon schottky diodes using asymmetric contacts. In: IEEE CONFERENCE ON NANOTECHNOLOGY, 9., 2009, Genoa. Proceedings… Genoa: IEEE, 2009. p. 243-245.

KATSNELSON, M. Graphene: carbon in two dimensions: materials today. New York: Cambridge University Press, 2007.

LOHMANN, T.; KLITZING , K. von; SMET, J. H. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Letter, Washington, v. 9, 2009.

NOORDEN, R. V. Moving towards a graphene world. Nature, London, v. 442, p. 228-229, 2006.

NOURBAKHSH, A. et al. Modified, semiconducting graphene in contact with a metal: characterization of the Schottky diode. Applied Physics Letters, Argonne, v. 97, 2010.

NOVOSELOV, K. S. et al. Electric field effect in atomically thin carbon films. Science, New York, v. 306, p. 666-669, 2004.

PEZOLDT, J.; HUMMEL, C.; SCHWIERZ, F. Graphene field effect transistor improvement by graphene-silicon dioxide interface modification. Physica E, Toronto, v. 44, 2011.

REICH, S. Tight-binding description of graphene. Physical Review B, New York, v. 66, n. 3, 2002.

SAI-KONG, C. et al. Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transactions on Electron Devices, New Jersey, v. 57, 2010.

SCHWIERZ, F. Electronics: industry-compatible graphene transistors. Nature, London, v. 472, 2011.

SEDRA, A. S.; SMITH, K. C. Microelectronic circuits. 5th ed. Oxford: Oxford University, 2004. 1 CD-ROM.

SON, Y. W.; COHEN, M. L.; LOUIE, S. G. Energy gaps in graphene nanoribbons. Physical Review B, New York, v. 97, n. 21, 2006.

TONGAY, S. et al. Tuning Schottky diodes at the many-layer-graphene/ semiconductor interface by doping. Carbon, Toronto, v. 49, 2011.

XINMING, L. et al. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, Malden, v. 22, 2010.

YU-MING, L. et al. Wafer-scale graphene integrated circuit. Science, New York, v. 332, n. 6035, p. 1294-1297, 2011.

ZHANG, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature, London, v. 438, p. 201-204, 2005.

Published

2013-07-01

How to Cite

Nanoscale electronic devices based on graphene nanoribbons. The Journal of the University of the Air Force , Rio de Janeiro, v. 26, n. 32, 2013. DOI: 10.22480/revunifa.2013.26.597. Disponível em: https://revistadaunifa.fab.mil.br/index.php/reunifa/article/view/597.. Acesso em: 20 sep. 2024.