Cambios musculoesqueléticos en un entorno de microgravedad
DOI:
https://doi.org/10.22480/revunifa.2020.33.281Palabras clave:
Astronautas, Microgravedad Sistema musculoesquelético, Vuelo espacialResumen
El astronauta es un individuo que trabaja en un ambiente hostil de microgravedad. Este ambiente anormal cambia la fisiología humana en prácticamente todos los sistemas orgánicos. El sistema musculoesquelético tiene
repercusiones clínicas que pueden extenderse incluso después de la misión espacial. Conocer los cambios en el sistema musculoesquelético para actuar antes, durante y después del vuelo espacial es esencial, ya que la hipotrofia ósea puede permanecer años después del regreso a la Tierra. La intervención médica tiene como objetivo reducir los riesgos de problemas de salud relacionados
con el sistema musculoesquelético. El objetivo de este estudio es realizar una revisión bibliográfica para
identificar cambios musculoesqueléticos en el entorno
de microgravedad y describir medidas de prevención y tratamiento durante y después del viaje aeroespacial.
Referencias
ALBI, E. et al. Impact of Gravity on Thyroid Cells. International Journal of Molecular Sciences, Basiléia, v. 18, n. 5, 2017. Disponível em: https:// www.wizdom.ai/publication/10.3390/IJMS18050972/ title/impact_of_gravity_on_thyroid_cells. Acessado em: 12 mar 2019, doi: 10.3390/ijms18050972.
ANDERSON, R. Can artificial gravity be created in space? 2015. Disponível em: http:// curious.astro.cornell.edu/about-us/150-people-in-astronomy/space-exploration-and-astronauts/ general-questions/927-can-artificial-gravity-be-created-in-space-intermediate. Acesso em: 19 ago 2018.
ARENTSON-LANTZ, E. J.; ENGLISH, K. L.; PADDON-JONES, D.; FRY, C. S. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. Journal of Applied Physiology, Rockville, v. 120, n. 8, 2016. Disponível em: https://journals.physiology. org/doi/full/10.1152/japplphysiol.00799.2015. Acessado em: 02 dez 2017, doi:10.1152/ japplphysiol.00799.2015.
BAILEY J. F. et al. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. The Spine Journal. Boston, v. 18, n. 1, 2018. Disponível em: https:// www.ncbi.nlm.nih.gov/pubmed/28962911. Acessado em: 05 fev 2018. doi: 10.1016/j.spinee.2017.08.261.
BUCKEY, J. C. J. Bone loss: managing calcium and bone loss in space. In:______. Space physiology. New York: Oxford University Press, 2006a. cap 1, p. 3-32.
BUCKEY, J. C. J. Muscle loss: approach to maintaining strength. In:______. Space physiology. New York: Oxford University Press, 2006b. cap. 4, p. 77-100.
CANCEDDA, R. The skeletal system. In: FITTON, B; BATTRICK, B. A world without gravity: research in space for health and industrial processes. Paris: European Space Agency, 2001. p. 83-92.
CANN, C. Response of the skeletal system to spaceflight. In: Churchill, S. E. Fundamentals of space life sciences. Malabar: Krieger publishing company, 1997. p. 83-103.
CERVINKA, T.; SIEVÄNEN, H.; HYTTINEN, J.; RITTWEGER, J. Bone loss patterns in cortical, subcortical, and trabecular compartments during simulated microgravity. Journal of Applied Physiology, Rockville, v. 117, n. 1, 2014. Disponível em: https://journals.physiology. org/doi/pdf/10.1152/japplphysiol.00021.2014. Acessado em: 05 jul 2017. doi:10.1152/ japplphysiol.00021.2014.
CLEMENT, G. Muscle-skeletal system in space. In: ______. Fundamentals of space medicine. Dordrecht, Netherlands: Kluwer Academic Publishers, 2003. p. 173- 204.
EVETTS, S. N., et al. Post space mission lumbo-pelvic neuromuscular reconditioning: a European perspective. Aviation, Space, and Environmental Medicine, Nova Iorque, v. 85, n. 7, 2014. Disponível em: https://www.ingentaconnect.com/content/ asma/asem/2014/00000085/00000007/art00014. Acessado em: 07 ago 2016.
GARCIA, H. D.; HAYS, S. M.; TSUJI, J. S. Modeling of blood lead levels in astronauts exposed to lead from microgravity-accelerated bone loss. Aviation, Space, and Environmental Medicine. Nova Iorque, v. 84, n. 12, 2013.
HARGENS, A. R.; VICO, L. Long-duration bed rest as an analog to microgravity. Journal of applied physiology, v. 120, n. 8, p. 891-903, 2016.
LANG, T. F. et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, Washington/DC, v. 19, 2006a.
LANG, T. F. et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, Washington/DC, v. 21, 2006b.
QUIRINO, D; PEDRO, L. A influência da microgravidade na musculatura esquelética: alterações musculares e intervenção terapêutica. Saúde & Tecnologia, v. 4, n. 8, 2012.
KAWASHIMA, S. et al. Human adductor muscles atrophy after short duration of unweighting. European journal of applied physiology, v. 92, n. 4-5, p. 602-605, 2004.
KRAINSKI, F. et al. The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest. Journal of Applied Physiology, Rockville, v. 116, n. 12, 2013. Disponível em: https://journals.physiology. org/doi/full/10.1152/japplphysiol.00803.2013. Acessado em: 20 abr 2017. doi: 10.1152/ japplphysiol.00803.2013.
LEBLANC, A. et al. Bone mineral and lean tissue loss after long duration space flight. Journal of Musculoskeletal Neuronal Interactions, Attiki, v. 1, 2000.
NAGARAJA, M. P.; JO., H. The Role of Mechanical Stimulation in Recovery of Bone Loss-High versus Low Magnitude and Frequency of Force. Life, Basiléia, v. 4, n. 2, 2014. Disponível em: https:// www.ncbi.nlm.nih.gov/pubmed/25370188. Acessado em: 27 mai 2016, doi: 10.3390/life4020117.
NASA. National Aeronautics and Space Administration. Disponível em: https://www. nasa.gov/mission_pages/station/research/ experiments/163.html. Acesso em: ago. 2018.
NASA. National Aeronautics and Space Administration. Disponível em: https://www. nasa.gov/mission_pages/station/research/ experiments/1001.html. Acesso em: ago. 2018.
PREMAOR, M. O.; FURLANETTO, T. W. Hipovitaminose D em adultos: entendendo melhor a apresentação de uma velha doença. Arquivos Brasileiros de Endocrinologia & Metabologia, ABE&M, Rio de Janeiro, v. 50, n. 1, p. 25-37, 2006.
QUÍMICA Fisiológica, 2017. Disponível em: http:// quimicafisiologicaufrrj.blogspot.com/2017/07/ metabolismo-do-calcio-e-fosfato.html. Acesso em: ago. 2018.
RILEY, D. A. et al. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. The FASEB Journal, Rockville, v. 4:, n. 1, 1990, doi: doi.org/10.1096/fasebj.4.1.2153085.
SHIBA, N. et al. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station. PLoS One, San Francisco, v. 10, n. 8, 2015. 21 ago. 2015. Disponível em: https://journals. plos.org/plosone/article?id=10.1371/journal. pone.0134736. Acessado em 09 fev 2017. doi:10.1371/journal.pone.0134736.
SIBONGA J. D. et al. Evaluating Bone Loss in ISS Astronauts. Aerospace Medicine and Human Performance, Alexandria, v. 86, n. 12, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/ pubmed/26630194. Acessado em: 14 jun 2016, doi: 10.3357/AMHP.EC06.2015.
SHACKELFORD, L. C. Musculoskeletal response to space flight. In: BARRATT M. R., POOL, S. L. Principles of clinical medicine for space flight. New York: Springer Science and Business Media, 2008. p. 293-306.
SMITH, S. M. et al. Bone metabolism and renal stone risk during International Space Station missions. Bone, Rockville Pike, v. 81, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/ pubmed/26456109. Acessado em: 27 ago 2016, doi: 10.1016/j.bone.2015.10.002.
SOCIEDADE BRASILEIRA DE ENDOCRINOLOGIA E METABOLOGIA. Vitamina D: novos valores de referência. Disponível em: https://www.endocrino. org.br/vitamina-d-novos-valores-de-referencia/. Acesso em: 31 jul 2018.
TEIXEIRA, R. C. M. Atmosfera e espaço. In: TEMPORAL, W. Medicina aeroespacial. Rio de Janeiro: Luzes, 2005. cap. 3, p. 75-76.
UDDIN, S. M., QIN, Y. X. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS One. San Francisco, v. 8, n. 9, 2013. Disponível em: https:// journals.plos.org/plosone/article?id=10.1371/ journal.pone.0073914. Acessado em: 04 set 2016, doi: 10.1371/journal.pone.0073914.
VICO, L. et al. Cortical and Trabecular Bone Microstructure Did Not Recover at W eight- Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, Washington/DC, v. 30, n. 10, 2017. Disponível em: https://asbmr.onlinelibrary.wiley.com/doi/ full/10.1002/jbmr.3188 . Acessado em: 09 out 2018, doi: 10.1002/jbmr.3188.
VITAMINA D: novos valores de referência. Sociedade Brasileira de Endocrinologia e Metabologia, 2017. Disponível em: https://www. endocrino.org.br/vitamina-d-novos-valores-de-referencia/. Acesso em: jul. 2018.
WILLIAMS, D. et al. Acclimation during space flight: effects on human physiology. Canadian Medical Association Journal, Ottawa, n. 13, p. 1317-23, jun. 2009.
ZHANG, X.; WANG, P.; WANG, Y. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss. Life Sciences in Space Research, Rockville Pike, v. 81, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/ pubmed/26553637. Acessado em: 08 ago 2016. doi: 10.1016/j.lssr.2015.08.004.
Descargas
Publicado
Número
Sección
Licencia
LicenciaRevista da UNIFA permite que o (s) autor (es) mantenha(m) seus direitos autorais sem restrições. Atribuição-NãoComercial 4.0 Internacional (CC BY-NC 4.0) - Revista da UNIFA é regida pela licença CC-BY-NC