Afterburner microscopic analysis of the nozzle insert material of the solid propellant rocket engine:

theoretical conception (Part I)

Authors

  • Ronald Izidoro Reis Instituto de Aeronáutica e Espaço (IAE) – São José dos Campos/SP – Brasil
  • Wilson Kiyoshi Shimote Instituto de Aeronáutica e Espaço (IAE) – São José dos Campos/SP – Brasil
  • Luiz Cláudio Pardini Instituto de Aeronáutica e Espaço (IAE) – São José dos Campos/SP – Brasil

DOI:

https://doi.org/10.22480/revunifa.2018.31.480

Keywords:

Nozzle insert, Rocket engine, Solid propulsion, CRFC insert

Abstract

This work presents a study conducted in the Materials Division (AMR), subordinated to the Institute of Aeronautics and Space (Instituto de Aeronáutica e Espaço - IAE), organization of the Department of Aerospace Science and Technology (DCTA), to investigate the microstructural behavior of carbon/ carbon composite based material used as heat shield/insert in nozzle throat of rockets. These systems are subjected to an intense heat flow from the gases at high speed, which lead to the ablation phenomenon in the nozzle regions in solid propulsion engines of S43 vehicles, for example. Ablation is an erosive phenomenon that occurs in regions of the thermal protection system and whose material is removed by thermomechanical, thermochemical and thermophysical or combined influences. Thus, in order to maintain the integrity of the nozzle, materials such as Thermal Protection Systems (TPS) are used. The materials for thermal protection can be classified, according to the predominant mechanism of protection, in ablatives and reirradiant. Most of the ablative materials are composites reinforced with structural fibers (silica or carbon, for example) and bonded with organic thermo rigid resins and the class of reirradiant materials include carbon mesh thermostructural composites reinforced with carbon fibers (CRFC), composites with silicon carbon/silicon carbide (C/SiC) hybrid mesh, and the silicon carbide mesh and fibers composites (SiC/SiC) and covalent ceramic materials such as ZrC, HfC and TaC, for example, mainly in the form of internal modifying materials or as coatings. 

References

BENTO, M. S. Estudo cinético da pirólise de precursores de materiais carbonosos. 2004. Dissertação (Mestrado) - Instituto Tecnológico de Aeronáutica. São José dos Campos: ITA. 215 p. Disponível em: http://www.bdita.bibl.ita.br/tesesdigitais/ lista_resumo.phpnum_tese=000530317. Acesso em: 6 jul. 2018.

DEDAVID, B. A.; GOMES, C. I.; MACHADO, G. Microscopia eletrônica de varredura: aplicações e preparação de amostras: materiais poliméricos, metálicos e semicondutores. Porto Alegre: EDIPUCRS, 2007.

FITZER, E.; MANOCHA, L. M. Carbon reinforcements and carbon/carbon composites. Berlin: Springer-Verlag, 1988. 343 p.

GONÇALVES, A. Caracterização de materiais termoestruturais a base de compósitos de carbono reforçados com fibras de carbono (CRFC) e carbonos modificados com carbeto de silício (SiC). 2008. Tese (Doutorado) – Curso de PósGraduação em Engenharia Mecânica e Aeronáutica. Instituto Tecnológico de Aeronáutica. São José dos Campos: ITA. 226 p. Disponível em: http://www. bdita.bibl.ita.br/tesesdigitais/lista_resumo.php? num_ tese=000549057. Acesso em: 6 jul. 2018.

GRIFFITHS; J.A.; MARSH, H. Proceedings of 15th Biennial Conf. on Carbon. University of Pennsylvania, Philadelphia, USA, 1981. p. 22-26.

JENKINS, G. M.; KAWAMURA, K. Polymeric carbon: carbon fibre, glass and char. Cambridge: Cambridge University Press, 1976.

LAUB, B.; VENKATAPATHY, E. Thermal protection system technology and facility needs for demanding future planetary missions. In: INTERNATIONAL WORKSHOP PLANETARY PROBE ATMOSPHERIC ENTRY AND DESCENT TRAJECTORY ANALYSIS AND SCIENCE. Proceedings... Noordwijk: ESA Publications Division, 2003.

LEVY NETO; F.; PARDINI, L.C. Compósitos estruturais: ciência e tecnologia. 2.ed. São Paulo: Blucher, 2016. 418 p.

LIUYANG, D.; XING Z.; YIGUANG, W. Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes. Ceramics International, 43, p. 16114–16120, 2017.

MARSH, H.; RODRÍGUEZ-REINOSO, F. Activated carbon. Amsterdam: Elsevier, 2006.

PALMERIO, A. F. Introdução à tecnologia de foguetes. São José dos Campos, SP: SindCT, 2017.

PARDINI, L.C.; GONÇALVES, A. Processamento de compósitos termoestruturais de carbono reforçado com fibras de carbono. Journal of Aerospace Technology and Management, São Paulo, v. 1, n. 2, p. 231-241, jul./dez. 2009.

PULCI, G., et al. Carbon–phenolic ablative materials for re-entry space vehicles: manufacturing and properties, Composites A 41, p. 1483–1490, 2010.

RAND, B. Matrix precursors for carbon-carbon composites, Essentials Carbon-Carbon Composites, Chap.3, Royal Soc. of Chemistry, London, UK, 1993. p. 67–102.

RUSS, J. C. The Image Processing Handbook. Sixth Ed, CRC Press, 2011. p.70. SAVAGE, G. Carbon/carbon composites. London: Chapman & Hall, 1993. 389 p.

SILVA, H. P.; PARDINI, L.C.; BITTENCOURT, E. Shear properties of carbon fiber/phenolic resin composites heat treated at high temperatures. Journal of Aerospace Technology and Management 8, n.3, p. 363-372, 2016.

SILVA, W. G. Qualificação de materiais utilizados em sistemas de proteção térmica para veículos espaciais. Tese (Mestrado em Física dos Plasmas) - Instituto Tecnológico de Aeronáutica – ITA, 2009. 112 p. Disponível em: http://www.bdita. bibl.ita.br/tesesdigitais/lista_resumo.php?num_ tese=000555112. Acesso em: 6 jul. 2018.

SOHDA, Y.; SHINAGAWA, M.; ISHII, M. Effect of carbonization pressure on carbon yield in a unit volume. Composites Part A: Applied Science and Manufacturing, v. 30, n. 4, p. 503-506, apr. 1999.

SUTTON, G. P. Rocket propulsion elements. 8. ed. New York: Wiley, 1992.

THIYAGARAJAN, N. Processing and characterization of reaction formed SiC - based ceramic matrix composites. Madras: Anna University, 1996.

WITTMANN; K.; Fundamentals. In: WILFRIED L, WITTMANN K, HALLMANN W. (Ed.). Handbook of Space Technology. United Kingdom: John Wiley and Sons, 2009. p. 33-113.

YONG-JIE, W. et al. Ablation behavior of a TaC coating on SiC coated C/C composites at different temperatures, Ceramics International, 39, p. 359–365, 2013.

YOUNG-JAE L.; HYEOK JONG J. Investigation on ablation behavior of CFRC composites prepared at different pressure. Composites: Part A 35,1285– 1290, 2004

Published

2018-12-03

Issue

Section

Original Articles

How to Cite

Afterburner microscopic analysis of the nozzle insert material of the solid propellant rocket engine:: theoretical conception (Part I). The Journal of the University of the Air Force , Rio de Janeiro, v. 31, n. 2, 2018. DOI: 10.22480/revunifa.2018.31.480. Disponível em: https://revistadaunifa.fab.mil.br/index.php/reunifa/article/view/480.. Acesso em: 20 sep. 2024.

Similar Articles

81-90 of 291

You may also start an advanced similarity search for this article.